Philadelphia University Faculty of Science Department of Basic Sciences and Mathematics Real Analysis 2 Second Exam

Student name:	Number:
---------------	---------

- 1) Determine which of the following functions is Riemann integrable. Justify
 - a) $f(x) = \sin x$, $x \in [-\frac{\pi}{2}, \frac{\pi}{2}]$
 - b) $f(x) = \tan x \ x \in (-\frac{\pi}{2}, \frac{\pi}{2})$
 - c) $f(x) = \begin{cases} 2 & -2 \le x < 0 \\ 0 & 0 \le x \le 1 \\ 5 & 1 < x \le 2 \end{cases}$
 - d) $f(x) = \begin{cases} 2-x & -2 \le x < 0 \\ x^2 & 0 \le x \le 3 \end{cases}$
- 2) If $f \in \mathcal{R}[a, b]$, prove that $f^2 \in \mathcal{R}[a, b]$.
- 3) Suppose that f is continuous on [a, b], $f(x) \ge 0 \forall x \in [a, b]$ and $\int_a^b f = 0$. prove that $f(x) = 0 \forall x \in [a, b]$.
- 4) Solve just one of the following questions
 - a) If $f: [a, b] \to \mathbb{R}$ is continuous on [a, b], then $f \in \mathcal{R}[a, b]$.
 - b) If $f:[a,b] \to \mathbb{R}$ is monotone on [a,b], then $f \in \mathcal{R}[a,b]$.